Codimension one Ricci soliton subgroups of solvable Iwasawa groups

نویسندگان

چکیده

Recently, Jablonski proved that, to a large extent, simply connected solvable Lie group endowed with left-invariant Ricci soliton metric can be isometrically embedded into the Iwasawa of non-compact symmetric space. Motivated by this result, we classify codimension one subgroups groups irreducible spaces type whose induced metrics are solitons. We also obtain classifications Damek-Ricci and generalized Heisenberg groups. Récemment, prouvé que, dans une mesure, un groupe de résoluble simplement connexe doté d'une métrique invariante à gauche peut être isométriquement plongé le d'Iwasawa d'un espace symétrique non compact. Motivés par ce résultat, nous classons les sous-groupes des groupes résolubles espaces symétriques irréductibles compact dont métriques induites sont solitons Ricci. Nous obtenons également et généralisés qui avec la induite.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-Generated Subgroups of A-Solvable Groups

In the discussion of A-solvable groups, the question arises if a torsion-free abelian group A of finite rank is flat as a module over its endomorphism ring if every A-generated subgroup of a torsion-free A-solvable group is A-solvable. This paper gives a negative answer by constructing a torsion-free group of rank 3 for which all A-generated torsion-free groups are A-solvable, although A is not...

متن کامل

Superrigid Subgroups of Solvable Lie Groups

Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that AdG Γ has the same Zariski closure as AdG. If α : Γ → GLn(R) is any finite-dimensional representation of Γ, we show that α virtually extends to a continuous representation σ of G. Furthermore, the image of σ is contained in the Zariski closure of the image of α. When Γ is not discrete, the same conclusions are t...

متن کامل

Separability of Solvable Subgroups in Linear Groups

Let Γ be a finitely generated linear group over a field of characteristic 0. Suppose that every solvable subgroup of Γ is polycyclic. Then any solvable subgroup of Γ is separable. This conclusion is false without the hypothesis that every solvable subgroup of Γ is polycyclic.

متن کامل

Solvable Groups with Many Bfc-subgroups

We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Černikov group or has an infinite properly descending chain of non-BFC subgroups.

متن کامل

The Ricci Bracket Flow for Solvable Lie Groups

The Ricci bracket flow is a geometric evolution on Lie algebras which is related to the Ricci flow on the corresponding Lie group. For nilpotent Lie groups, these two flows are equivalent. In the solvable case, it is not known whether they are equivalent. We examine a family of solvable Lie algebras and identify various elements of that family which are solitons under the Ricci bracket flow. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.05.008